-
功率器件熱設計基礎(三)——功率半導體殼溫和散熱器溫度定義和測試方法
功率半導體熱設計是實現IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的熱設計基礎知識,才能完成精確熱設計,提高功率器件的利用率,降低系統成本,并保證系統的可靠性。
2024-11-25
-
功率器件熱設計基礎(四)——功率半導體芯片溫度和測試方法
功率半導體熱設計是實現IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的熱設計基礎知識,才能完成精確熱設計,提高功率器件的利用率,降低系統成本,并保證系統的可靠性。
2024-11-23
-
功率器件的熱設計基礎(二)——熱阻的串聯和并聯
功率半導體熱設計是實現IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的熱設計基礎知識,才能完成精確熱設計,提高功率器件的利用率,降低系統成本,并保證系統的可靠性。
2024-11-12
-
功率器件熱設計基礎(一)——功率半導體的熱阻
功率半導體熱設計是實現IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的熱設計基礎知識,才能完成精確熱設計,提高功率器件的利用率,降低系統成本,并保證系統的可靠性。
2024-11-11
-
車載充電器材料選擇比較:碳化硅與IGBT
車載充電器 (OBC) 解決了電動汽車 (EV) 的一個重要問題。它們將來自電網的交流電轉換為適合電池充電的直流電,從而實現電動汽車充電。隨著每年上市的電動汽車設計、架構和尺寸越來越豐富,車載充電器的實施也變得越來越復雜。
2024-11-11
-
采用IGBT5.XT技術的PrimePACK?為風能變流器提供卓越的解決方案
鑒于迫切的環境需求,我們必須確保清潔能源基礎設施的啟用,以減少碳排放對環境的負面影響。在這一至關重要的舉措中,風力發電技術扮演了關鍵角色,并已處于領先地位。在過去的20年中,風力渦輪機的尺寸已擴大三倍,其發電功率大幅提升,不久后將突破15MW的大關。因此,先進風能變流器的需求在不斷增長。這些變流器在惡劣境條件下工作,需要高度的可靠性和堅固性,以確保較長的使用壽命。為了在限制機柜內元件數量的情況下最大化功率輸出,我們需要采用高功率密度設計。鑒于需求的持續增長,我們的大規模生產能力顯得尤為關鍵通過對現有逆變器設計的升級,不僅能夠降低風險,還能縮短開發時間,最終達到優化設計和開發流程的目的。
2024-10-27
-
用Python自動化雙脈沖測試
電力電子設備中使用的半導體材料正從硅過渡到寬禁帶(WBG)半導體,比如碳化硅(SiC)和氮化鎵(GaN)等半導體在更高功率水平下具有卓越的性能,被廣泛應用于汽車和工業領域中。由于工作電壓高,SiC技術正被應用于電動汽車動力系統,而GaN則主要用作筆記本電腦、移動設備和其他消費設備的快速充電器。本文主要說明的是寬禁帶FET的測試,但雙脈沖測試也可應用于硅器件、MOSFET或IGBT中。
2024-10-23
-
IGBT 脈沖測量方法的優點?正確選擇脈沖測量
采用快速 IGBT 開關的脈沖測量方法應用范圍非常廣泛。它適用于幾乎所有類型的電感功率元件,從小型 SMD 電感器到重達幾噸的 MVA 范圍的功率扼流圈。
2024-10-12
-
高壓柵極驅動器的功率耗散和散熱分析,一文get√
高頻率開關的MOSFET和IGBT柵極驅動器,可能會產生大量的耗散功率。因此,需要確認驅動器功率耗散和由此產生的結溫,確保器件在可接受的溫度范圍內工作。高壓柵極驅動集成電路(HVIC)是專為半橋開關應用設計的高邊和低邊柵極驅動集成電路,驅動高壓、高速MOSFET 而設計。
2024-10-08
-
更高額定電流的第8代LV100 IGBT模塊
本文介紹了為工業應用設計的第8代1800A/1200V IGBT功率模塊,該功率模塊采用了先進的第8代IGBT和二極管。與傳統功率模塊相比,該模塊采用了分段式柵極溝槽(SDA)結構,并通過可以控制載流子的等離子體層(CPL)結構減少芯片厚度,從而顯著的降低了功率損耗。特別是,在開通dv/dt與傳統模塊相同的情況下,SDA結構可將Eon降低約60%,通過大幅降低功率損耗,模塊可以提高功率密度。通過采用這些技術并擴大芯片面積,第8代1200V IGBT功率模塊在相同的三菱電機LV100封裝中實現了1800A的額定電流,是傳統1200V IGBT功率模塊的1.5倍。
2024-09-25
-
IGBT 還是 SiC ? 英飛凌新型混合功率器件助力新能源汽車實現高性價比電驅
近幾年新能源車發展迅猛,技術創新突飛猛進。如何設計更高效的牽引逆變器使整車獲得更長的續航里程一直是研發技術人員探討的最重要話題之一。高效的牽引逆變器需要在功率、效率和材料利用率之間取得適當的平衡。
2024-09-25
-
什么是IGBT的退飽和(desaturation)? 什么情況下IGBT會進入退飽和狀態?
這要從IGBT的平面結構說起。IGBT和MOSFET有類似的器件結構,MOS中的漏極D相當于IGBT的集電極C,而MOS的源極S相當于IGBT的發射極E,二者都會發生退飽和現象。下圖所示是一個簡化平面型IGBT剖面圖,以此來闡述退飽和發生的原因。柵極施加一個大于閾值的正壓VGE,則柵極氧化層下方會出現強反型層,形成導電溝道。
2024-08-30
- 國產芯片與系統深度融合!兆易創新聯袂普華軟件破局汽車電子
- 揭秘未來勞動力:貿澤與Molex新電子書解析機器人技術變革
- 臺積電大陸芯片生產遇阻,美國豁免撤銷加速國產替代進程
- 2025年Q2全球DRAM營收突破316億美元,創近年單季最高漲幅
- 200W開關功率:Pickering 600系列繼電器通吃高壓高能場景
- 超越傳統:空心線圈如何重塑RF與自動化領域——工程師必備選型指南
- 貿澤電子攜手英飛凌:海量元器件助力工程師“加速跑”
- 國產測試儀器新突破:賽邁測控完成近億元A輪融資
- 安森美光伏方案剖析:助力逆變器能效全面升級
- 深度解析通訊變壓器的核心優勢、應用生態與原廠選型成本戰略
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall