<noscript id="jftie"></noscript>
    <style id="jftie"><mark id="jftie"><dfn id="jftie"></dfn></mark></style>
  1. <span id="jftie"></span>
    • 国产成人精品久久一区二区,韩国精品久久久久久无码,国产精品国产高清国产av,欧美99久久无码一区人妻a片,亚洲高清码在线精品av,午夜人妻久久久久久久久,伊人热热久久原色播放www ,亚洲女教师丝祙在线播放
      你的位置:首頁 > 電源管理 > 正文

      SiC MOSFET的設計挑戰——如何平衡性能與可靠性

      發布時間:2023-05-10 來源:英飛凌 責任編輯:wenwei

      【導讀】碳化硅(SiC)的性能潛力是毋庸置疑的,但設計者必須掌握一個關鍵的挑戰:確定哪種設計方法能夠在其應用中取得最大的成功。


      先進的器件設計都會非常關注導通電阻,將其作為特定技術的主要基準參數。然而,工程師們必須在主要性能指標(如電阻和開關損耗),與實際應用需考慮的其他因素(如足夠的可靠性)之間找到適當的平衡。


      優秀的器件應該允許一定的設計自由度,以便在不對工藝和版圖進行重大改變的情況下適應各種工況的需要。然而,關鍵的性能指標仍然是盡可能低的比電阻,并結合其他重要的參數。圖1顯示了我們認為必不可少的幾個標準,或許還可以增加更多。


      1681129425687047.png

      圖1:SiC MOSFET的魯棒性和制造穩定性(右)必須與性能參數(左)相平衡


      元件在其目標應用的工作條件下的可靠性是最重要的驗收標準之一。與已有的硅(Si)器件的主要區別是:SiC元件在更強的內部電場下工作。因此,設計者應該非常謹慎地分析相關機制。硅和碳化硅器件的共同點是,元件的總電阻是由從漏極和源極的一系列電阻的串聯定義的。


      這包括靠近接觸孔的高摻雜區域電阻、溝道電阻、JFET(結型場效應晶體管)區域的電阻以及漂移區電阻(見圖2)。請注意,在高壓硅MOSFET(金屬氧化物半導體場效應晶體管)中,漂移區阻顯然在總電阻中占主導地位。而在碳化硅器件中,工程師可以使用具有更高電導率的漂移區,從而降低漂移區電阻的總比重。


      1681129409886096.png

      圖2:平面DMOS SiC MOSFET(左)和垂直溝槽TMOS SiC MOSFET的剖面圖,以及與電阻有關的貢獻的相應位置


      設計者必須考慮到,MOSFET的關鍵部分——碳化硅外延與柵極氧化層(二氧化硅)之間的界面,與硅相比有以下差異:


      SiC的單位面積的表面態密度比Si高,導致Si-和C-懸掛鍵的密度更高。靠近界面的柵極氧化層中的缺陷可能在帶隙內出現,并成為電子的陷阱。


      熱生長氧化物的厚度在很大程度上取決于晶面。


      與硅器件相比,SiC器件在阻斷模式下的漏極誘導電場要高得多(MV而不是kV)。這就需要采取措施限制柵極氧化物中的電場,以保持氧化物在阻斷階段的可靠性。另見圖3:對于TMOS(溝槽MOSFET),薄弱點是溝槽拐角,而對于DMOS(雙擴散金屬氧化物半導體),薄弱點是元胞的中心。


      與Si器件相比,SiC MOS結構在給定的電場下顯示出更高的隧穿電流,因為勢壘高度較低。因此,工程師必須限制界面上SiC一側的電場。


      上面提到的界面缺陷導致了非常低的溝道遷移率。因此,溝道對總導通電阻的貢獻很大。所以,SiC相對于硅,因為非常低的漂移區電阻而獲得的優勢,被較高的溝道電阻削弱。


      控制柵氧化層的電場強度


      一個常用的降低溝道電阻的方法,是在導通狀態下增加施加在柵氧化層上的電場——或者通過更高的柵源(VGS(on))偏壓進行導通,或者使用相當薄的柵極氧化層。所應用的電場超過了通常用于硅基MOSFET器件的數值(4至5MV/cm,而硅中最大為3MV/cm)。在導通狀態下,處于這種高電場的柵氧化層有可能加速老化,并限制了篩選外在氧化物缺陷的能力[1]。


      1681129395250901.png

      圖3

      左圖:平面MOSFET(半元胞)的典型結構。它顯示了與氧化物場應力有關的兩個敏感區域。

      右圖:溝槽式MOSFET(半元胞)的典型結構。這里的關鍵問題是溝槽邊角的氧化層應力。


      基于這些考慮,很明顯,SiC中的平面MOSFET器件實際上有兩個與氧化物場應力有關的敏感區域,如圖3的左邊部分所示。首先,在反向阻斷模式下,漂移區和柵極氧化物界面存在高電場應力。其次,柵極和源極之間的重疊部分在導通狀態下有應力。


      在導通狀態下的高電場被認為是更危險的,因為只要保證導通時的性能,就沒有器件設計措施可以減少導通狀態下的電場應力。我們的總體目標是在盡量減小SiC的RDS(on)的同時,保證柵極氧化層安全可靠。


      因此,我們決定放棄DMOS技術,從一開始就專注于溝槽型器件。從具有高缺陷密度的晶面轉向其他更有利的晶面方向,可以在低柵氧化層場強下實現低通道電阻。


      我們開發了CoolSiC? MOSFET元胞設計,以限制通態和斷態時柵極氧化物中的電場(見圖4)。同時,它為1200V級別提供了一個有吸引力的比導通電阻,即使在大規模生產中也能以穩定和可重復的方式實現。低導通電阻使得VGS(on)電壓可以使用低至15V的偏壓,同時有足夠高的柵源-閾值電壓,通常為4.5V。這些數值是SiC晶體管領域的基準。


      該設計的特點包括通過自對準工藝將溝道定位在一個單一的晶面。這確保了最高的溝道遷移率,并縮小了閾值電壓分布范圍。另一個特點是深p型與實際的MOS溝槽在中心相交,以便允許窄的p+到p+間距尺寸,從而有效地屏蔽溝槽氧化層拐角。


      總之,我們可以說,應用于我們的CoolSiC?器件的設計理念不僅提供了良好的導通電阻,而且還為大規模生產提供了可靠的制造工藝。


      30.jpg

      圖4:CoolSiC? MOSFET元胞結構剖面圖


      來源: 英飛凌,趙佳



      免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯系小編進行處理。


      推薦閱讀:


      如何通過使用外部電路擴展低邊電流檢測并提高DRV8952的檢測精度

      氮化鎵器件在D類音頻功放中的應用及優勢

      集成式光學接收器如何滿足床旁檢測儀器的未來需求

      MP5493:電表PMIC界新來的“五好學生”

      浪涌抗擾度怎么測?我們用這個A/D轉換器試了一下

      特別推薦
      技術文章更多>>
      技術白皮書下載更多>>
      熱門搜索
      ?

      關閉

      ?

      關閉

      主站蜘蛛池模板: 欧美激情乱人伦| 国产成人综合亚洲亚洲国产第一页| 中文有码vs无码人妻| 亚洲爆乳少妇无码激情| 亚洲另类欧美在线电影| 少妇被粗大的猛进69视频| 亚洲 欧洲 无码 在线观看| 青草影院内射中出高潮| 国产精品久久国产精品99 gif| 国产麻豆精品一区| 蜜芽tv国产在线精品三区| 欧美成人看片一区二区| 国产成av人片在线观看无码 | 中文字幕人妻无码一夲道| 中文字幕制服丝袜第57页 | 久久男人av资源站| 国产极品美女到高潮| 成 人色 网 站 欧美大片在线观看| 少妇午夜福利一区二区| 又大又黄又粗又爽的免费视频| 伊人久久大香线蕉av仙人| 中文字幕日韩人妻不卡一区| 9l国产精品久久久久尤物| 久久国产精久久精产国| 亚洲国产成人无码网站大全| 97se狼狼狼狼狼亚洲网| 人人爽人人爽人人片a∨| 国产精品宾馆在线精品酒店 | 亚洲中文字幕日产乱码高清app| 精品国产亚洲一区二区三区在线观看| 亚洲一区二区无码偷拍| 国产日产欧洲无码视频无遮挡| 国产欧美国日产在线播放| 国产精品h片在线播放| 国产乱子伦精品无码码专区| 亚洲欧美v国产一区二区| 白嫩少妇bbw撒尿视频| 欧美精品亚洲精品日韩传电影| 无码纯肉动漫在线观看| 久久久中日ab精品综合| 久久久综合亚洲色一区二区三区 |